Concerning the Heat of Formation of the Isopropyl Radical

E. Tschuikow-Roux* and Yonghua Chen

Contribution from the Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4. Received April 19, 1989

Abstract: The heat of formation of the isopropyl radical has been reevaluated using the third-law method and kinetic data for the reactions $i-C_3H_7 \Rightarrow C_3H_6 + H$ and $2i-C_3H_7 \Rightarrow 2,3-DMB$. The result of $\Delta H_6^{\circ}_{298}(i-C_3H_7) = 21.0 \pm 0.5$ kcal mol⁻¹ agrees with a recent bromination equilibrium study and is consistent with a small barrier ($\sim 1 \text{ kcal mol}^{-1}$) for internal rotation for each of the two CH₃ groups as found in an ab initio geometry optimization study.

The importance of accurate heats of formation of simple alkyl radicals in thermochemical kinetics is generally recognized. In particular, the $\Delta H_{f}^{o}(\mathbf{R})$ values for the prototypical radicals $\mathbf{R} =$ C_2H_5 , *i*- C_3H_7 , and *t*- C_4H_9 continue to receive much attention¹⁻¹¹ in view of persisting discrepancies between data derived from iodination studies as a primary standard

$$RH + I \rightleftharpoons R + HI \qquad (1,-1)$$

incorporating an assumed activation energy for the opposing reaction, $E_{-1} \approx 1 \pm 1$ kcal mol^{-1,10} and other equilibria not involing the halogen.^{1,2,5,6} In general, the earlier iodination studies have yielded "lower" $\Delta H_{f}^{\circ}(\mathbf{R})$ values.

Cumulative evidence^{1-4,8,11} and a direct determination of the equilibrium⁶ H + C₂H₄ \rightleftharpoons C₂H₅ have now established $\Delta H_{f^{\circ}_{298^{-}}}(C_2H_5) = 28.4 \text{ kcal mol}^{-1}$, some 2.5 kcal mol}^{-1} higher than the earlier "accepted" value.¹⁰ The situation with respect to the *i*-C₃H₇ and $t-C_4H_9$ radicals is less resolved, though here, again, a trend to higher values may be indicated.^{5,7,8} The range of literature values encompasses $\Delta H_1^{\circ}_{298}(i-C_3H_7) = 18.2$ to 22.3 kcal mol⁻¹¹² and $\Delta H_{f}^{\circ}_{298}(t-C_{4}H_{9}) = 7.6$ to 12.4 kcal mol^{-1,5,7-10} It is worthy of note that the values at the upper end of the range have profound implications on heretofore low-barrier hydrogen atom transfer processes (e.g., $R + HBr \rightarrow RH + Br$) in that they predict negative activation energies (!).⁷⁻⁹ The highest enthalpy of formation values for $i-C_3H_7$ and $t-C_4H_9$ have been derived by Tsang⁵ from an analysis of a series of nonhalogen kinetic systems, which, when combined with corresponding kinetic data for the reverse reactions, yielded equilibrium constants for the two processes (R $= i - C_3 H_7, t - C_4 H_9$):

$$R\frac{k_{d}}{k_{a}} \text{ olefin} + H$$
 (2)

$$R_2 \frac{k'_d}{k_c} 2R$$
 (3)

Russell et al.⁸ have noted that the calculated values of $\Delta H_f^{\circ}(i-C_3H_7)$ from five kinetic studies related to process 2 are about 1 kcal mol⁻¹ higher than those evaluated from three kinetic studies related to the equilibrium process 3. A closer scrutiny of Tsang's evaluation revealed an apparently propagated error for process 2. The purpose of this communication is to correct said error and to recalculate $\Delta H_{f_{298}}^{o}(i-C_{3}H_{7})$ incorporating the

- Tsang, W. Int. J. Chem. Kinet. 1978, 10, 821.
 Cao, J.-R.; Back, M. H. Int. J. Chem. Kinet. 1984, 16, 961.
 Castelhano, A. L.; Marriott, P. R.; Griller, D. J. Am. Chem. Soc. 1981, 103, 4262.
- (4) Castelhano, A. L.; Griller, D. J. Am. Chem. Soc. 1982, 104, 3655.
 (5) Tsang, W. J. Am. Chem. Soc. 1985, 107, 2872.
 (6) Brouard, M.; Lightfoot, P. D.; Pilling, M. J. J. Phys. Chem. 1986, 90,
- 445
- (7) Russell, J. J.; Seetula, J. A.; Timonen, R. S.; Gutman, D.; Nava, D. (8) Russell, J. J.; Seetula, J. A.; Gutman, D. J. Am. Chem. Soc. 1988, 110, 3084.
 (8) Russell, J. J.; Seetula, J. A.; Gutman, D. J. Am. Chem. Soc. 1988, 110,
- 3092 (9) Müller-Markgraf, W.; Rossi, M. J.; Golden, D. M. J. Am. Chem. Soc.
- 1989, 111, 956. (10) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493.
- (11) Parmar, S. S.; Benson, S. W. J. Am. Chem. Soc. 1989, 111, 57. (12) Luo, Y.-R.; Benson, S. W. J. Phys. Chem. 1989, 93, 3304.

latest computed barriers of internal rotation.¹³

Evaluation and Discussion

Tsang evaluated the equilibrium constant for process 2 by combining literature rate ratios (corrected to the high-pressure limit): rate $2/[\text{rate } -3]^{1/2} = (\text{rate } C_3H_6 \text{ production})/[\text{rate } 2,3-DMB \text{ production})^{1/2} = k_d^{\infty}/k_c^{1/2}$, with independently determined rate constants for isopropyl radical combination (k_c) , and hydrogen addition to propene (k_a) ; thus $K_p = (k_d^{\infty}/k_c^{1/2})(k_c^{1/2}/k_a)R'T$. Since the determination of relative rate constants is usually more accurate than their absolute measurements, the computed K_p and hence $\Delta H_{f}^{o}(i-C_{3}H_{7})$ are more susceptible to the choice of k_{a} and $k_{\rm c}$, but less so on the latter because of the square-root dependence.

For k_c Tsang chose to average the room-temperature results of Adachi and Basco¹⁴ ($k_c = 7.7 \times 10^9$ L mol⁻¹ s⁻¹), based on flash-photolysis kinetic spectroscopy measurements, with those of Parkes and Quinn¹⁵ who employed the technique of molecular modulation spectroscopy at 300-800 K and observed a small $T^{-1/2}$ temperature dependence, $k_c/L \mod^{-1} s^{-1} = (4.8 \pm 1.2)10^9 \times$ $(300/T)^{1/2}$, which was also adopted by Tsang. For the addition reaction Tsang lists $k_a/L \mod^{-1} s^{-1} = 6.1 \times 10^9 \exp(-609/T)$ which he attributes to Harris and Pitts.¹⁶ In fact, the latter authors did not determine a rate constant for H-addition to the terminal olefinic position, but reported a total rate constant based on flash-photolysis resonance fluorescence measurements. The above expression for k_a is quoted by Harris and Pitts (their Table IV) and is due to Kurylo et al.¹⁷ However, a recalculation of log K_p for reaction 2 using the k_a from Kurylo et al. for the five systems listed in Table I (system II) of Tsang's paper gives somewhat lower values. Tsang's log K_p values can be approximately reconciled with k_a/L mol⁻¹ s⁻¹ = 3.25 × 10⁹ exp(-629/T), an expression calculable from the second entry in Table IV of Harris and Pitts¹⁶ and attributed to Wagner and Zellner.¹⁸ Unfortunately, in ref 16 the A factor is misquoted; Wagner and Zellner reported k_a/L $\text{mol}^{-1} \text{ s}^{-1} = (5.4 \pm 0.6) 10^9 \exp[-(629 \pm 50)/T]$ which, within error limits, is in excellent agreement with the Arrhenius parameters of Kurylo et al.¹⁷, k_a/L mol⁻¹ s⁻¹ = (6.13 ± 0.16)10⁹ exp[-(609 $\pm 6)/T$]. Recalculation of the data for process 2 in ref 5 using the latter expression yields lower $\Delta H_f^{\circ}(i-C_3H_7)$ values, which, in general, agree well with those computed⁵ for process 3 (but see below).

The evaluation of $\Delta H_{f^{\circ}298}(\mathbf{R})$ by the third-law method requires entropy and heat capacity data for the species involved. For the isopropyl radical the vibrational assignment is incomplete.¹⁹ Tsang recalculated the entropies for $i-C_3H_7$ as a function of temperature using the group frequency assignment and (presumably) structural data of Purnell and Quinn,²⁰ with the difference that he treated

- (13) Pacansky, J.; Yoshimine, M. J. Phys. Chem. 1987, 91, 1024.
- (14) Adachi, H.; Basco, N. Int. J. Chem. Kinet. 1981, 13, 367.
- (15) Parkes, D. A.; Quinn, C. P. J. Chem. Soc., Faraday Trans. 1 1976, 72, 1953.
- (16) Harris, G. W.; Pitts, J. N., Jr. J. Chem. Phys. 1982, 77, 3995.
 (17) Kurylo, M. J.; Peterson, N. C.; Braun, W. J. Chem. Phys. 1971, 54,
- (18) Wagner, H. Gg.; Zellner, R. Ber. Bunsenges. Phys. Chem. 1972, 76, 440.

(19) Pacansky, J.; Coufal, H. J. Chem. Phys. 1980, 72, 3298.

Table I. Evaluation of K_p for the Process $C_3H_7 \rightleftharpoons C_3H_6 + H$ from Kinetic Data

system ^a	radical source	ref	T _m , K ^b	$k_{\rm d}^{\rm \infty}/k_{\rm c}^{1/2}$; (mol/L s) ^{1/2}	k_{c}^{d} L/(mol s)	k_{a} , L/(mol s)	log K _p
II.3	propane (Hg-sensitized)	21	600	9.90 ₀ (-6)	4.24 (+9)	2.22 (+9)	-7.855
11.4	propane (Hg-sensitized)	22	600	1.03 ₆ (-5)			-7.825
II.1	(<i>i</i> -C ₃ H ₆ D) ₂ CO (photolysis)	23	700	6.58 ₀ (-4)	3.93 (+9)	2.57 (+9)	-6.035
II.2	i-C ₃ H ₇ CHÓ (photolysis)	24	700	8.46 ₂ (-4)			-5.92 ₆
11.5	propane (azomethane sensitized)	25	750	3.05 ₂ (-3)	3.79 (+9)	2.72 (+9)	-5.371

^aNumbers refer to Table I in ref 5. ^bMean temperature of decomposition study. ^cFrom rate expression in ref 5 and Tsang's assessment of k_d/k_d^{∞} . ^d k_c/L mol⁻¹ s⁻¹ = 6 × 10⁹ (300/T)^{1/2} as assessed in ref 5. ^c k_a/L mol⁻¹ s⁻¹ = (6.13 ± 0.16)10⁹ exp[-(609 ± 6)/T] from ref 17.

Table II. Heat of Formation of Isopropyl Radical^a at 298 K

$V_0,^b$ cal mol ⁻¹	ref	$\Delta H_{\rm f}^{\rm o}_{298}({\rm R}),$ kcal mol ⁻¹	Δ , ^d kcal mol ⁻¹
free (2)	5	21.6	0.3
800 (2)	13	21.4	0.3
1080 (2)	13	21.2	0.3
1980 (2)	20	20.7	0.3
3400 (2)	26	20.0	0.3

^a Kinetics/third law evaluation. Spectroscopic assignments from ref 5. Frequencies (cm⁻¹) 3100 (1), 2960 (6), 1440 (6), 1300 (1), 1200 (1), 990 (4), 950 (1), 397 (1), 367 (1); $I_A I_B I_C = 2.67 \times 10^{-115} \text{ g}^3 \text{ cm}^6$, $\sigma = 2$; internal rotation, 2 rotors (V_0), $I = 4.2 \times 10^{-40} \text{ g cm}^2$, symmetry 3. ^b Barrier to internal rotation. ^c Mean value from five kinetic systems (see Table I). ^d Average deviation.

the two CH₃ tops of isopropyl as free rotors, whereas Purnell and Quinn assumed each rotor to be hindered by a 3-fold cosine barrier with $V_0 = 1980$ cal mol⁻¹. Thus, Tsang calculates slightly higher $S^{\circ}(i-C_3H_7)$ values which translates into a somewhat higher radical heat of formation. Recently, Pacansky and Yoshimine¹³ reported a theoretical geometry optimization of $i-C_3H_7$ and computed a 3-fold potential barrier for the single methyl internal rotation of $V_0 = 1.08$ and 0.8 kcal mol⁻¹ for rigid and relaxed motions, respectively, and correspondingly a 3-fold potential function of 2.27 and 1.05 kcal mol⁻¹ for the in-phase double internal rotation. These low barriers have little effect on the calculated ΔS°_{T} values for process 2 at the elevated temperatures of the kinetic studies, but do affect the heat capacity corrections to 298 K with the result of further lowering $\Delta H_f^{\circ}_{298}(i-C_3H_7)$.

Table I lists the recalculated log K_p values from kinetic data at the midpoint of the temperature range in the decomposition studies.⁵ To provide ready contact with ref 5, the first two columns identify the system and the method used, and give reference to the original literature²¹⁻²⁵

Table II lists the mean $\Delta H_{f}^{\circ}{}_{298}(R)$ values derived from the five kinetic studies for the free CH₃-rotor model and four hindered rotor models suggested in the literature.^{13,20,26} In these calculations we have used the familiar relations

$$\Delta H^{\circ}_{T}(2) = -RT \ln K_{p} + T \Delta S^{\circ}_{T}(2)$$

$$\Delta H^{\circ}_{298}(2) = \Delta H^{\circ}_{T}(2) - \langle \Delta C_{p}^{\circ} \rangle (T - 298)$$

$$\Delta H_{\rm f}^{\circ}{}_{298}(R) = \Delta H_{\rm f}^{\circ}{}_{298}({\rm H}) + \Delta H_{\rm f}^{\circ}{}_{298}({\rm C}_{3}{\rm H}_{6}) - \Delta H^{\circ}{}_{298}(2)$$

```
(21) Papic, M. M.; Laidler, K. J. Can. J. Chem. 1971, 49, 549.
```

- (22) Back, R. A.; Takamuku, S. J. Am. Chem. Soc. 1964, 86, 2558
 (23) Heller, C. A.; Gordon, A. S. J. Phys. Chem. 1958, 62, 709.
- (23) Heller, C. A., Gordon, A. S. J. Phys. Chem. 1956, 62, 709. (24) Kerr, J. A., Trotman-Dickenson, A. F. Trans. Faraday Soc. 1959, 55,
- 921.
 (25) Camilleri, P.; Marshall, R. M.; Purnell, H. J. Chem. Soc., Faraday Trans. 1 1975, 71, 1491.
- (26) Burcat, A. In Combustion Chemistry; Gardiner, W. C., Jr.; Ed.; Springer-Verlag: New York, 1984; Chapter 8.

The thermodynamic functions for H and C_3H_6 were taken from standard tabulations.^{27,28} The entropy and heat capacity of *i*- C_3H_7 as a function of temperature were computed from the spectroscopic information listed by Tsang⁵ for the free rotor model. Appropriate corrections²⁹ were then applied for the hindered rotation models.

A comparison of the enthalpy of formation for the free rotor model with Tsang's evaluation shows no dramatic changes, but it narrows the gap between $\Delta H_f^{\circ}(i-C_3H_7)$ values evaluated from processes 2 and 3. In the latter group one reported value is anomalously high (Table IV, II.2, ref 5). Recalculation using the rate constant for 2,3-dimethylbutan (DMB) decomposition from the original literature³⁰ and the well-known thermodynamic functions for DMB³¹ yields $\Delta H_f^{\circ}_{300}(i-C_3H_7) = 20.6$ kcal mol⁻¹ instead of the reported value⁵ of 22.1 kcal mol⁻¹.

The results presented in Table II taken in conjunction with the kinetic third-law-based evaluations for process 3 support a value of $\Delta H_1^{\circ}{}_{298}(i-C_3H_7) = 21.0 \pm 0.5$ kcal mol⁻¹ where the uncertainty is a conservative estimate. This value is in agreement with very recent other determinations^{8,12} and is consistent with a ca. 1 kcal mol⁻¹ barrier for internal rotation for each of the two CH₃ groups in isopropyl. In the light of the ab initio computations of hindered internal rotation barriers,¹³ the 3400 cal mol⁻¹ value employed by Burcat²⁶ seems unrealistically high. In this connection, the use of NASA polynomials²⁶ for thermochemical calculations involving the isopropyl radical is not recommended. The computed C_p and S° values are significantly lower than those obtained from the spectroscopic data listed in the same reference, and which are almost identical with those employed by Tsang.⁵

In concluding it may be noted, that while the present analysis, which supports the higher $\Delta H_f^{\circ}(i-C_3H_7)$ value, points to the excellent internal consistency of a significant volume of kinetic data encompassing processes 2 and 3, it does not resolve the issue with respect to the lower ΔH_f values derived from iodination studies.^{3,4,10}

Acknowledgment. The financial support of the Natural Science and Engineering Research Council of Canada is gratefully acknowledged.

Registry No. i-C₃H₇, 2025-55-0.

⁽²⁷⁾ JANAF thermochemical Tables, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 1971, no. 37.

⁽²⁸⁾ Chao, J.; Zwolinski, B. J. J. Phys. Chem. Ref. Data 1975, 4, 251.
(29) Lewis, G. N.; Randall, M. Thermodynamics, 2nd ed.; McGraw-Hill: New York, 1961 (revised by K. S. Pitzer and L. Brewer).

⁽³⁰⁾ Bull, K. R.; Marshall, R. M.; Purnell, J. H. Proc. R. Soc. London, Ser. A 1975, 342, 259.

⁽³¹⁾ Stull, D. R.; Westrum, E. F., Jr.; Sinke, G. C. The Chemical Thermodynamics of Organic Compounds, Wiley: New York, 1969.